跳跃表的实现¶
Redis 的跳跃表由 redis.h/zskiplistNode
和 redis.h/zskiplist
两个结构定义,
其中 zskiplistNode
结构用于表示跳跃表节点,
而 zskiplist
结构则用于保存跳跃表节点的相关信息,
比如节点的数量,
以及指向表头节点和表尾节点的指针,
等等。
![digraph {
rankdir = LR;
node [shape = record, width = "0.5"];
//
l [label = " <header> header | <tail> tail | level \n 5 | length \n 3 "];
subgraph cluster_nodes {
style = invisible;
header [label = " <l32> L32 | ... | <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 "];
bw_null [label = "NULL", shape = plaintext];
level_null [label = "NULL", shape = plaintext];
A [label = " <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 1.0 | o1 "];
B [label = " <l2> L2 | <l1> L1 | <backward> BW | 2.0 | o2 "];
C [label = " <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 3.0 | o3 "];
}
subgraph cluster_nulls {
style = invisible;
n1 [label = "NULL", shape = plaintext];
n2 [label = "NULL", shape = plaintext];
n3 [label = "NULL", shape = plaintext];
n4 [label = "NULL", shape = plaintext];
n5 [label = "NULL", shape = plaintext];
}
//
l:header -> header;
l:tail -> C;
header:l32 -> level_null [label = "0"];
header:l5 -> C:l5 [label = "3"];
header:l4 -> A:l4 [label = "1"];
header:l3 -> A:l3 [label = "1"];
header:l2 -> A:l2 [label = "1"];
header:l1 -> A:l1 [label = "1"];
A:l4 -> C:l4 [label = "2"];
A:l3 -> C:l3 [label = "2"];
A:l2 -> B:l2 [label = "1"];
A:l1 -> B:l1 [label = "1"];
B:l2 -> C:l2 [label = "1"];
B:l1 -> C:l1 [label = "1"];
C:l5 -> n5 [label = "0"];
C:l4 -> n4 [label = "0"];
C:l3 -> n3 [label = "0"];
C:l2 -> n2 [label = "0"];
C:l1 -> n1 [label = "0"];
bw_null -> A:backward -> B:backward -> C:backward [dir = back];
label = "\n 图 5-1 一个跳跃表";
}](../../_images/graphviz-4c409ae7fe8af1be4cd8bdb36ab0701ee85adf21.png)
图 5-1 展示了一个跳跃表示例,
位于图片最左边的是 zskiplist
结构,
该结构包含以下属性:
header
:指向跳跃表的表头节点。tail
:指向跳跃表的表尾节点。level
:记录目前跳跃表内,层数最大的那个节点的层数(表头节点的层数不计算在内)。length
:记录跳跃表的长度,也即是,跳跃表目前包含节点的数量(表头节点不计算在内)。
位于 zskiplist
结构右方的是四个 zskiplistNode
结构,
该结构包含以下属性:
层(level):节点中用
L1
、L2
、L3
等字样标记节点的各个层,L1
代表第一层,L2
代表第二层,以此类推。每个层都带有两个属性:前进指针和跨度。前进指针用于访问位于表尾方向的其他节点,而跨度则记录了前进指针所指向节点和当前节点的距离。在上面的图片中,连线上带有数字的箭头就代表前进指针,而那个数字就是跨度。当程序从表头向表尾进行遍历时,访问会沿着层的前进指针进行。后退(backward)指针:节点中用
BW
字样标记节点的后退指针,它指向位于当前节点的前一个节点。后退指针在程序从表尾向表头遍历时使用。分值(score):各个节点中的
1.0
、2.0
和3.0
是节点所保存的分值。在跳跃表中,节点按各自所保存的分值从小到大排列。成员对象(obj):各个节点中的
o1
、o2
和o3
是节点所保存的成员对象。
注意表头节点和其他节点的构造是一样的: 表头节点也有后退指针、分值和成员对象, 不过表头节点的这些属性都不会被用到, 所以图中省略了这些部分, 只显示了表头节点的各个层。
本节接下来的内容将对 zskiplistNode
和 zskiplist
两个结构进行更详细的介绍。
跳跃表节点¶
跳跃表节点的实现由 redis.h/zskiplistNode
结构定义:
typedef struct zskiplistNode {
// 后退指针
struct zskiplistNode *backward;
// 分值
double score;
// 成员对象
robj *obj;
// 层
struct zskiplistLevel {
// 前进指针
struct zskiplistNode *forward;
// 跨度
unsigned int span;
} level[];
} zskiplistNode;
层¶
跳跃表节点的 level
数组可以包含多个元素,
每个元素都包含一个指向其他节点的指针,
程序可以通过这些层来加快访问其他节点的速度,
一般来说,
层的数量越多,
访问其他节点的速度就越快。
每次创建一个新跳跃表节点的时候,
程序都根据幂次定律
(power law,越大的数出现的概率越小)
随机生成一个介于 1
和 32
之间的值作为 level
数组的大小,
这个大小就是层的“高度”。
图 5-2 分别展示了三个高度为 1
层、 3
层和 5
层的节点,
因为 C 语言的数组索引总是从 0
开始的,
所以节点的第一层是 level[0]
,
而第二层是 level[1]
,
以此类推。
![digraph {
label = "\n 图 5-2 带有不同层高的节点";
rankdir = LR;
//
node [shape = record];
n1 [label = " zskiplistNode | level[0] | backward | score | obj "];
n2 [label = " zskiplistNode | level[2] | level[1] | level[0] | backward | score | obj "];
n3 [label = " zskiplistNode | level[4] | level[3] | level[2] | level[1] | level[0] | backward | score | obj "];
//
edge [style = invis];
n1 -> n2 -> n3;
}](../../_images/graphviz-a01a427de778b253192702e117433ffd484015e9.png)
前进指针¶
每个层都有一个指向表尾方向的前进指针(level[i].forward
属性),
用于从表头向表尾方向访问节点。
图 5-3 用虚线表示出了程序从表头向表尾方向, 遍历跳跃表中所有节点的路径:
迭代程序首先访问跳跃表的第一个节点(表头), 然后从第四层的前进指针移动到表中的第二个节点。
在第二个节点时, 程序沿着第二层的前进指针移动到表中的第三个节点。
在第三个节点时, 程序同样沿着第二层的前进指针移动到表中的第四个节点。
当程序再次沿着第四个节点的前进指针移动时, 它碰到一个
NULL
, 程序知道这时已经到达了跳跃表的表尾, 于是结束这次遍历。
![digraph {
rankdir = LR;
node [shape = record, width = "0.5"];
//
l [label = " <header> header | <tail> tail | level \n 5 | length \n 3 "];
subgraph cluster_nodes {
style = invisible;
header [label = " <l32> L32 | ... | <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 "];
bw_null [label = "NULL", shape = plaintext];
level_null [label = "NULL", shape = plaintext];
A [label = " <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 1.0 | o1 "];
B [label = " <l2> L2 | <l1> L1 | <backward> BW | 2.0 | o2 "];
C [label = " <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 3.0 | o3 "];
}
subgraph cluster_nulls {
style = invisible;
n1 [label = "NULL", shape = plaintext];
n2 [label = "NULL", shape = plaintext];
n3 [label = "NULL", shape = plaintext];
n4 [label = "NULL", shape = plaintext];
n5 [label = "NULL", shape = plaintext];
}
//
l:header -> header [style = dashed];
l:tail -> C;
header:l32 -> level_null [label = "0"];
header:l5 -> C:l5 [label = "3"];
header:l4 -> A:l4 [label = "1", style = dashed];
header:l3 -> A:l3 [label = "1"];
header:l2 -> A:l2 [label = "1"];
header:l1 -> A:l1 [label = "1"];
A:l4 -> C:l4 [label = "2"];
A:l3 -> C:l3 [label = "2"];
A:l2 -> B:l2 [label = "1", style = dashed];
A:l1 -> B:l1 [label = "1"];
B:l2 -> C:l2 [label = "1", style = dashed];
B:l1 -> C:l1 [label = "1"];
C:l5 -> n5 [label = "0"];
C:l4 -> n4 [label = "0"];
C:l3 -> n3 [label = "0"];
C:l2 -> n2 [label = "0", style = dashed];
C:l1 -> n1 [label = "0"];
bw_null -> A:backward -> B:backward -> C:backward [dir = back];
label = "\n 图 5-3 遍历整个跳跃表";
}](../../_images/graphviz-0e7fc9d8a6e7a8d2be58f01d2cad76aa10090d20.png)
跨度¶
层的跨度(level[i].span
属性)用于记录两个节点之间的距离:
两个节点之间的跨度越大, 它们相距得就越远。
指向
NULL
的所有前进指针的跨度都为0
, 因为它们没有连向任何节点。
初看上去, 很容易以为跨度和遍历操作有关, 但实际上并不是这样 —— 遍历操作只使用前进指针就可以完成了, 跨度实际上是用来计算排位(rank)的: 在查找某个节点的过程中, 将沿途访问过的所有层的跨度累计起来, 得到的结果就是目标节点在跳跃表中的排位。
举个例子,
图 5-4 用虚线标记了在跳跃表中查找分值为 3.0
、
成员对象为 o3
的节点时,
沿途经历的层:
查找的过程只经过了一个层,
并且层的跨度为 3
,
所以目标节点在跳跃表中的排位为 3
。
![digraph {
rankdir = LR;
node [shape = record, width = "0.5"];
//
l [label = " <header> header | <tail> tail | level \n 5 | length \n 3 "];
subgraph cluster_nodes {
style = invisible;
header [label = " <l32> L32 | ... | <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 "];
bw_null [label = "NULL", shape = plaintext];
level_null [label = "NULL", shape = plaintext];
A [label = " <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 1.0 | o1 "];
B [label = " <l2> L2 | <l1> L1 | <backward> BW | 2.0 | o2 "];
C [label = " <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 3.0 | o3 "];
}
subgraph cluster_nulls {
style = invisible;
n1 [label = "NULL", shape = plaintext];
n2 [label = "NULL", shape = plaintext];
n3 [label = "NULL", shape = plaintext];
n4 [label = "NULL", shape = plaintext];
n5 [label = "NULL", shape = plaintext];
}
//
l:header -> header [style = dashed];
l:tail -> C;
header:l32 -> level_null [label = "0"];
header:l5 -> C:l5 [label = "3", style = dashed];
header:l4 -> A:l4 [label = "1"];
header:l3 -> A:l3 [label = "1"];
header:l2 -> A:l2 [label = "1"];
header:l1 -> A:l1 [label = "1"];
A:l4 -> C:l4 [label = "2"];
A:l3 -> C:l3 [label = "2"];
A:l2 -> B:l2 [label = "1"];
A:l1 -> B:l1 [label = "1"];
B:l2 -> C:l2 [label = "1"];
B:l1 -> C:l1 [label = "1"];
C:l5 -> n5 [label = "0"];
C:l4 -> n4 [label = "0"];
C:l3 -> n3 [label = "0"];
C:l2 -> n2 [label = "0"];
C:l1 -> n1 [label = "0"];
bw_null -> A:backward -> B:backward -> C:backward [dir = back];
label = "\n 图 5-4 计算节点的排位";
}](../../_images/graphviz-f4ddb652fe99a4f3c23a57609ef5d903977d2e95.png)
再举个例子,
图 5-5 用虚线标记了在跳跃表中查找分值为 2.0
、
成员对象为 o2
的节点时,
沿途经历的层:
在查找节点的过程中,
程序经过了两个跨度为 1
的节点,
因此可以计算出,
目标节点在跳跃表中的排位为 2 。
![digraph {
rankdir = LR;
node [shape = record, width = "0.5"];
//
l [label = " <header> header | <tail> tail | level \n 5 | length \n 3 "];
subgraph cluster_nodes {
style = invisible;
header [label = " <l32> L32 | ... | <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 "];
bw_null [label = "NULL", shape = plaintext];
level_null [label = "NULL", shape = plaintext];
A [label = " <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 1.0 | o1 "];
B [label = " <l2> L2 | <l1> L1 | <backward> BW | 2.0 | o2 "];
C [label = " <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 3.0 | o3 "];
}
subgraph cluster_nulls {
style = invisible;
n1 [label = "NULL", shape = plaintext];
n2 [label = "NULL", shape = plaintext];
n3 [label = "NULL", shape = plaintext];
n4 [label = "NULL", shape = plaintext];
n5 [label = "NULL", shape = plaintext];
}
//
l:header -> header [style = dashed];
l:tail -> C;
header:l32 -> level_null [label = "0"];
header:l5 -> C:l5 [label = "3"];
header:l4 -> A:l4 [label = "1", style = dashed];
header:l3 -> A:l3 [label = "1"];
header:l2 -> A:l2 [label = "1"];
header:l1 -> A:l1 [label = "1"];
A:l4 -> C:l4 [label = "2"];
A:l3 -> C:l3 [label = "2"];
A:l2 -> B:l2 [label = "1", style = dashed];
A:l1 -> B:l1 [label = "1"];
B:l2 -> C:l2 [label = "1"];
B:l1 -> C:l1 [label = "1"];
C:l5 -> n5 [label = "0"];
C:l4 -> n4 [label = "0"];
C:l3 -> n3 [label = "0"];
C:l2 -> n2 [label = "0"];
C:l1 -> n1 [label = "0"];
bw_null -> A:backward -> B:backward -> C:backward [dir = back];
label = "\n 图 5-5 另一个计算节点排位的例子";
}](../../_images/graphviz-e48eab76126f63456b4fcebe0934114aca6edf16.png)
后退指针¶
节点的后退指针(backward
属性)用于从表尾向表头方向访问节点:
跟可以一次跳过多个节点的前进指针不同,
因为每个节点只有一个后退指针,
所以每次只能后退至前一个节点。
图 5-6 用虚线展示了如果从表尾向表头遍历跳跃表中的所有节点:
程序首先通过跳跃表的 tail
指针访问表尾节点,
然后通过后退指针访问倒数第二个节点,
之后再沿着后退指针访问倒数第三个节点,
再之后遇到指向 NULL
的后退指针,
于是访问结束。
![digraph {
rankdir = LR;
node [shape = record, width = "0.5"];
//
l [label = " <header> header | <tail> tail | level \n 5 | length \n 3 "];
subgraph cluster_nodes {
style = invisible;
header [label = " <l32> L32 | ... | <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 "];
bw_null [label = "NULL", shape = plaintext];
level_null [label = "NULL", shape = plaintext];
A [label = " <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 1.0 | o1 "];
B [label = " <l2> L2 | <l1> L1 | <backward> BW | 2.0 | o2 "];
C [label = " <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 3.0 | o3 "];
}
subgraph cluster_nulls {
style = invisible;
n1 [label = "NULL", shape = plaintext];
n2 [label = "NULL", shape = plaintext];
n3 [label = "NULL", shape = plaintext];
n4 [label = "NULL", shape = plaintext];
n5 [label = "NULL", shape = plaintext];
}
//
l:header -> header;
l:tail -> C [style = dashed];
header:l32 -> level_null [label = "0"];
header:l5 -> C:l5 [label = "3"];
header:l4 -> A:l4 [label = "1"];
header:l3 -> A:l3 [label = "1"];
header:l2 -> A:l2 [label = "1"];
header:l1 -> A:l1 [label = "1"];
A:l4 -> C:l4 [label = "2"];
A:l3 -> C:l3 [label = "2"];
A:l2 -> B:l2 [label = "1"];
A:l1 -> B:l1 [label = "1"];
B:l2 -> C:l2 [label = "1"];
B:l1 -> C:l1 [label = "1"];
C:l5 -> n5 [label = "0"];
C:l4 -> n4 [label = "0"];
C:l3 -> n3 [label = "0"];
C:l2 -> n2 [label = "0"];
C:l1 -> n1 [label = "0"];
bw_null -> A:backward -> B:backward -> C:backward [dir = back, style = dashed];
label = "\n 图 5-6 从表尾向表头方向遍历跳跃表";
}](../../_images/graphviz-ea663b445cfec1bf55cbdef7b12128090be9f206.png)
分值和成员¶
节点的分值(score
属性)是一个 double
类型的浮点数,
跳跃表中的所有节点都按分值从小到大来排序。
节点的成员对象(obj
属性)是一个指针,
它指向一个字符串对象,
而字符串对象则保存着一个 SDS 值。
在同一个跳跃表中, 各个节点保存的成员对象必须是唯一的, 但是多个节点保存的分值却可以是相同的: 分值相同的节点将按照成员对象在字典序中的大小来进行排序, 成员对象较小的节点会排在前面(靠近表头的方向), 而成员对象较大的节点则会排在后面(靠近表尾的方向)。
举个例子,
在图 5-7 所示的跳跃表中,
三个跳跃表节点都保存了相同的分值 10086.0
,
但保存成员对象 o1
的节点却排在保存成员对象 o2
和 o3
的节点之前,
而保存成员对象 o2
的节点又排在保存成员对象 o3
的节点之前,
由此可见,
o1
、 o2
、 o3
三个成员对象在字典中的排序为 o1 <= o2 <= o3
。
![digraph {
rankdir = LR;
node [shape = record, width = "0.5"];
//
l [label = " <header> header | <tail> tail | level \n 5 | length \n 3 "];
subgraph cluster_nodes {
style = invisible;
header [label = " <l32> L32 | ... | <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 "];
bw_null [label = "NULL", shape = plaintext];
level_null [label = "NULL", shape = plaintext];
A [label = " <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 10086.0 | o1 "];
B [label = " <l2> L2 | <l1> L1 | <backward> BW | 10086.0 | o2 "];
C [label = " <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 10086.0 | o3 "];
}
subgraph cluster_nulls {
style = invisible;
n1 [label = "NULL", shape = plaintext];
n2 [label = "NULL", shape = plaintext];
n3 [label = "NULL", shape = plaintext];
n4 [label = "NULL", shape = plaintext];
n5 [label = "NULL", shape = plaintext];
}
//
l:header -> header;
l:tail -> C;
header:l32 -> level_null [label = "0"];
header:l5 -> C:l5 [label = "3"];
header:l4 -> A:l4 [label = "1"];
header:l3 -> A:l3 [label = "1"];
header:l2 -> A:l2 [label = "1"];
header:l1 -> A:l1 [label = "1"];
A:l4 -> C:l4 [label = "2"];
A:l3 -> C:l3 [label = "2"];
A:l2 -> B:l2 [label = "1"];
A:l1 -> B:l1 [label = "1"];
B:l2 -> C:l2 [label = "1"];
B:l1 -> C:l1 [label = "1"];
C:l5 -> n5 [label = "0"];
C:l4 -> n4 [label = "0"];
C:l3 -> n3 [label = "0"];
C:l2 -> n2 [label = "0"];
C:l1 -> n1 [label = "0"];
bw_null -> A:backward -> B:backward -> C:backward [dir = back];
label = "\n 图 5-7 三个带有相同分值的跳跃表节点";
}](../../_images/graphviz-f91a286d047d3dd08d24e99b93f4a50af6a3c855.png)
跳跃表¶
虽然仅靠多个跳跃表节点就可以组成一个跳跃表, 如图 5-8 所示。
![digraph {
rankdir = LR;
node [shape = record, width = "0.5"];
//
//l [label = " <header> header | <tail> tail | level \n 5 | length \n 3 "];
subgraph cluster_nodes {
style = invisible;
header [label = " <l32> L32 | ... | <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 "];
bw_null [label = "NULL", shape = plaintext];
level_null [label = "NULL", shape = plaintext];
A [label = " <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 1.0 | o1 "];
B [label = " <l2> L2 | <l1> L1 | <backward> BW | 2.0 | o2 "];
C [label = " <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 3.0 | o3 "];
}
subgraph cluster_nulls {
style = invisible;
n1 [label = "NULL", shape = plaintext];
n2 [label = "NULL", shape = plaintext];
n3 [label = "NULL", shape = plaintext];
n4 [label = "NULL", shape = plaintext];
n5 [label = "NULL", shape = plaintext];
}
//
//l:header -> header;
//l:tail -> C;
header:l32 -> level_null [label = "0"];
header:l5 -> C:l5 [label = "3"];
header:l4 -> A:l4 [label = "1"];
header:l3 -> A:l3 [label = "1"];
header:l2 -> A:l2 [label = "1"];
header:l1 -> A:l1 [label = "1"];
A:l4 -> C:l4 [label = "2"];
A:l3 -> C:l3 [label = "2"];
A:l2 -> B:l2 [label = "1"];
A:l1 -> B:l1 [label = "1"];
B:l2 -> C:l2 [label = "1"];
B:l1 -> C:l1 [label = "1"];
C:l5 -> n5 [label = "0"];
C:l4 -> n4 [label = "0"];
C:l3 -> n3 [label = "0"];
C:l2 -> n2 [label = "0"];
C:l1 -> n1 [label = "0"];
bw_null -> A:backward -> B:backward -> C:backward [dir = back];
label = "\n 图 5-8 由多个跳跃表节点组成的跳跃表";
}](../../_images/graphviz-d1f44b1c26a73b27b32938deb9037250b8abb5b3.png)
但通过使用一个 zskiplist
结构来持有这些节点,
程序可以更方便地对整个跳跃表进行处理,
比如快速访问跳跃表的表头节点和表尾节点,
又或者快速地获取跳跃表节点的数量(也即是跳跃表的长度)等信息,
如图 5-9 所示。
![digraph {
rankdir = LR;
node [shape = record, width = "0.5"];
//
l [label = " <header> header | <tail> tail | level \n 5 | length \n 3 "];
subgraph cluster_nodes {
style = invisible;
header [label = " <l32> L32 | ... | <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 "];
bw_null [label = "NULL", shape = plaintext];
level_null [label = "NULL", shape = plaintext];
A [label = " <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 1.0 | o1 "];
B [label = " <l2> L2 | <l1> L1 | <backward> BW | 2.0 | o2 "];
C [label = " <l5> L5 | <l4> L4 | <l3> L3 | <l2> L2 | <l1> L1 | <backward> BW | 3.0 | o3 "];
}
subgraph cluster_nulls {
style = invisible;
n1 [label = "NULL", shape = plaintext];
n2 [label = "NULL", shape = plaintext];
n3 [label = "NULL", shape = plaintext];
n4 [label = "NULL", shape = plaintext];
n5 [label = "NULL", shape = plaintext];
}
//
l:header -> header;
l:tail -> C;
header:l32 -> level_null [label = "0"];
header:l5 -> C:l5 [label = "3"];
header:l4 -> A:l4 [label = "1"];
header:l3 -> A:l3 [label = "1"];
header:l2 -> A:l2 [label = "1"];
header:l1 -> A:l1 [label = "1"];
A:l4 -> C:l4 [label = "2"];
A:l3 -> C:l3 [label = "2"];
A:l2 -> B:l2 [label = "1"];
A:l1 -> B:l1 [label = "1"];
B:l2 -> C:l2 [label = "1"];
B:l1 -> C:l1 [label = "1"];
C:l5 -> n5 [label = "0"];
C:l4 -> n4 [label = "0"];
C:l3 -> n3 [label = "0"];
C:l2 -> n2 [label = "0"];
C:l1 -> n1 [label = "0"];
bw_null -> A:backward -> B:backward -> C:backward [dir = back];
label = "\n 图 5-9 带有 zskiplist 结构的跳跃表";
}](../../_images/graphviz-339b048812fa71275e41b587ec02fde685fd40e9.png)
zskiplist
结构的定义如下:
typedef struct zskiplist {
// 表头节点和表尾节点
struct zskiplistNode *header, *tail;
// 表中节点的数量
unsigned long length;
// 表中层数最大的节点的层数
int level;
} zskiplist;
header
和 tail
指针分别指向跳跃表的表头和表尾节点,
通过这两个指针,
程序定位表头节点和表尾节点的复杂度为 O(1) 。
通过使用 length
属性来记录节点的数量,
程序可以在 O(1) 复杂度内返回跳跃表的长度。
level
属性则用于在 O(1) 复杂度内获取跳跃表中层高最大的那个节点的层数量,
注意表头节点的层高并不计算在内。