跳跃表的实现 ------------------ Redis 的跳跃表由 ``redis.h/zskiplistNode`` 和 ``redis.h/zskiplist`` 两个结构定义, 其中 ``zskiplistNode`` 结构用于表示跳跃表节点, 而 ``zskiplist`` 结构则用于保存跳跃表节点的相关信息, 比如节点的数量, 以及指向表头节点和表尾节点的指针, 等等。 .. graphviz:: digraph { rankdir = LR; node [shape = record, width = "0.5"]; // l [label = "
header | tail | level \n 5 | length \n 3 "]; subgraph cluster_nodes { style = invisible; header [label = " L32 | ... | L5 | L4 | L3 | L2 | L1 "]; bw_null [label = "NULL", shape = plaintext]; level_null [label = "NULL", shape = plaintext]; A [label = " L4 | L3 | L2 | L1 | BW | 1.0 | o1 "]; B [label = " L2 | L1 | BW | 2.0 | o2 "]; C [label = " L5 | L4 | L3 | L2 | L1 | BW | 3.0 | o3 "]; } subgraph cluster_nulls { style = invisible; n1 [label = "NULL", shape = plaintext]; n2 [label = "NULL", shape = plaintext]; n3 [label = "NULL", shape = plaintext]; n4 [label = "NULL", shape = plaintext]; n5 [label = "NULL", shape = plaintext]; } // l:header -> header; l:tail -> C; header:l32 -> level_null [label = "0"]; header:l5 -> C:l5 [label = "3"]; header:l4 -> A:l4 [label = "1"]; header:l3 -> A:l3 [label = "1"]; header:l2 -> A:l2 [label = "1"]; header:l1 -> A:l1 [label = "1"]; A:l4 -> C:l4 [label = "2"]; A:l3 -> C:l3 [label = "2"]; A:l2 -> B:l2 [label = "1"]; A:l1 -> B:l1 [label = "1"]; B:l2 -> C:l2 [label = "1"]; B:l1 -> C:l1 [label = "1"]; C:l5 -> n5 [label = "0"]; C:l4 -> n4 [label = "0"]; C:l3 -> n3 [label = "0"]; C:l2 -> n2 [label = "0"]; C:l1 -> n1 [label = "0"]; bw_null -> A:backward -> B:backward -> C:backward [dir = back]; label = "\n 图 5-1 一个跳跃表"; } 图 5-1 展示了一个跳跃表示例, 位于图片最左边的是 ``zskiplist`` 结构, 该结构包含以下属性: - ``header`` :指向跳跃表的表头节点。 - ``tail`` :指向跳跃表的表尾节点。 - ``level`` :记录目前跳跃表内,层数最大的那个节点的层数(表头节点的层数不计算在内)。 - ``length`` :记录跳跃表的长度,也即是,跳跃表目前包含节点的数量(表头节点不计算在内)。 位于 ``zskiplist`` 结构右方的是四个 ``zskiplistNode`` 结构, 该结构包含以下属性: - 层(level):节点中用 ``L1`` 、 ``L2`` 、 ``L3`` 等字样标记节点的各个层, ``L1`` 代表第一层, ``L2`` 代表第二层,以此类推。每个层都带有两个属性:前进指针和跨度。前进指针用于访问位于表尾方向的其他节点,而跨度则记录了前进指针所指向节点和当前节点的距离。在上面的图片中,连线上带有数字的箭头就代表前进指针,而那个数字就是跨度。当程序从表头向表尾进行遍历时,访问会沿着层的前进指针进行。 - 后退(backward)指针:节点中用 ``BW`` 字样标记节点的后退指针,它指向位于当前节点的前一个节点。后退指针在程序从表尾向表头遍历时使用。 - 分值(score):各个节点中的 ``1.0`` 、 ``2.0`` 和 ``3.0`` 是节点所保存的分值。在跳跃表中,节点按各自所保存的分值从小到大排列。 - 成员对象(obj):各个节点中的 ``o1`` 、 ``o2`` 和 ``o3`` 是节点所保存的成员对象。 注意表头节点和其他节点的构造是一样的: 表头节点也有后退指针、分值和成员对象, 不过表头节点的这些属性都不会被用到, 所以图中省略了这些部分, 只显示了表头节点的各个层。 本节接下来的内容将对 ``zskiplistNode`` 和 ``zskiplist`` 两个结构进行更详细的介绍。 跳跃表节点 ^^^^^^^^^^^^^^^^ 跳跃表节点的实现由 ``redis.h/zskiplistNode`` 结构定义: :: typedef struct zskiplistNode { // 后退指针 struct zskiplistNode *backward; // 分值 double score; // 成员对象 robj *obj; // 层 struct zskiplistLevel { // 前进指针 struct zskiplistNode *forward; // 跨度 unsigned int span; } level[]; } zskiplistNode; 层 """""" 跳跃表节点的 ``level`` 数组可以包含多个元素, 每个元素都包含一个指向其他节点的指针, 程序可以通过这些层来加快访问其他节点的速度, 一般来说, 层的数量越多, 访问其他节点的速度就越快。 每次创建一个新跳跃表节点的时候, 程序都根据幂次定律 (\ `power law `_\ ,越大的数出现的概率越小) 随机生成一个介于 ``1`` 和 ``32`` 之间的值作为 ``level`` 数组的大小, 这个大小就是层的“高度”。 图 5-2 分别展示了三个高度为 ``1`` 层、 ``3`` 层和 ``5`` 层的节点, 因为 C 语言的数组索引总是从 ``0`` 开始的, 所以节点的第一层是 ``level[0]`` , 而第二层是 ``level[1]`` , 以此类推。 .. graphviz:: digraph { label = "\n 图 5-2 带有不同层高的节点"; rankdir = LR; // node [shape = record]; n1 [label = " zskiplistNode | level[0] | backward | score | obj "]; n2 [label = " zskiplistNode | level[2] | level[1] | level[0] | backward | score | obj "]; n3 [label = " zskiplistNode | level[4] | level[3] | level[2] | level[1] | level[0] | backward | score | obj "]; // edge [style = invis]; n1 -> n2 -> n3; } 前进指针 """"""""""""""""""" 每个层都有一个指向表尾方向的前进指针(\ ``level[i].forward`` 属性), 用于从表头向表尾方向访问节点。 图 5-3 用虚线表示出了程序从表头向表尾方向, 遍历跳跃表中所有节点的路径: 1. 迭代程序首先访问跳跃表的第一个节点(表头), 然后从第四层的前进指针移动到表中的第二个节点。 2. 在第二个节点时, 程序沿着第二层的前进指针移动到表中的第三个节点。 3. 在第三个节点时, 程序同样沿着第二层的前进指针移动到表中的第四个节点。 4. 当程序再次沿着第四个节点的前进指针移动时, 它碰到一个 ``NULL`` , 程序知道这时已经到达了跳跃表的表尾, 于是结束这次遍历。 .. graphviz:: digraph { rankdir = LR; node [shape = record, width = "0.5"]; // l [label = "
header | tail | level \n 5 | length \n 3 "]; subgraph cluster_nodes { style = invisible; header [label = " L32 | ... | L5 | L4 | L3 | L2 | L1 "]; bw_null [label = "NULL", shape = plaintext]; level_null [label = "NULL", shape = plaintext]; A [label = " L4 | L3 | L2 | L1 | BW | 1.0 | o1 "]; B [label = " L2 | L1 | BW | 2.0 | o2 "]; C [label = " L5 | L4 | L3 | L2 | L1 | BW | 3.0 | o3 "]; } subgraph cluster_nulls { style = invisible; n1 [label = "NULL", shape = plaintext]; n2 [label = "NULL", shape = plaintext]; n3 [label = "NULL", shape = plaintext]; n4 [label = "NULL", shape = plaintext]; n5 [label = "NULL", shape = plaintext]; } // l:header -> header [style = dashed]; l:tail -> C; header:l32 -> level_null [label = "0"]; header:l5 -> C:l5 [label = "3"]; header:l4 -> A:l4 [label = "1", style = dashed]; header:l3 -> A:l3 [label = "1"]; header:l2 -> A:l2 [label = "1"]; header:l1 -> A:l1 [label = "1"]; A:l4 -> C:l4 [label = "2"]; A:l3 -> C:l3 [label = "2"]; A:l2 -> B:l2 [label = "1", style = dashed]; A:l1 -> B:l1 [label = "1"]; B:l2 -> C:l2 [label = "1", style = dashed]; B:l1 -> C:l1 [label = "1"]; C:l5 -> n5 [label = "0"]; C:l4 -> n4 [label = "0"]; C:l3 -> n3 [label = "0"]; C:l2 -> n2 [label = "0", style = dashed]; C:l1 -> n1 [label = "0"]; bw_null -> A:backward -> B:backward -> C:backward [dir = back]; label = "\n 图 5-3 遍历整个跳跃表"; } 跨度 """"""""""""""""""""" 层的跨度(\ ``level[i].span`` 属性)用于记录两个节点之间的距离: - 两个节点之间的跨度越大, 它们相距得就越远。 - 指向 ``NULL`` 的所有前进指针的跨度都为 ``0`` , 因为它们没有连向任何节点。 初看上去, 很容易以为跨度和遍历操作有关, 但实际上并不是这样 —— 遍历操作只使用前进指针就可以完成了, 跨度实际上是用来计算排位(rank)的: 在查找某个节点的过程中, 将沿途访问过的所有层的跨度累计起来, 得到的结果就是目标节点在跳跃表中的排位。 举个例子, 图 5-4 用虚线标记了在跳跃表中查找分值为 ``3.0`` 、 成员对象为 ``o3`` 的节点时, 沿途经历的层: 查找的过程只经过了一个层, 并且层的跨度为 ``3`` , 所以目标节点在跳跃表中的排位为 ``3`` 。 .. graphviz:: digraph { rankdir = LR; node [shape = record, width = "0.5"]; // l [label = "
header | tail | level \n 5 | length \n 3 "]; subgraph cluster_nodes { style = invisible; header [label = " L32 | ... | L5 | L4 | L3 | L2 | L1 "]; bw_null [label = "NULL", shape = plaintext]; level_null [label = "NULL", shape = plaintext]; A [label = " L4 | L3 | L2 | L1 | BW | 1.0 | o1 "]; B [label = " L2 | L1 | BW | 2.0 | o2 "]; C [label = " L5 | L4 | L3 | L2 | L1 | BW | 3.0 | o3 "]; } subgraph cluster_nulls { style = invisible; n1 [label = "NULL", shape = plaintext]; n2 [label = "NULL", shape = plaintext]; n3 [label = "NULL", shape = plaintext]; n4 [label = "NULL", shape = plaintext]; n5 [label = "NULL", shape = plaintext]; } // l:header -> header [style = dashed]; l:tail -> C; header:l32 -> level_null [label = "0"]; header:l5 -> C:l5 [label = "3", style = dashed]; header:l4 -> A:l4 [label = "1"]; header:l3 -> A:l3 [label = "1"]; header:l2 -> A:l2 [label = "1"]; header:l1 -> A:l1 [label = "1"]; A:l4 -> C:l4 [label = "2"]; A:l3 -> C:l3 [label = "2"]; A:l2 -> B:l2 [label = "1"]; A:l1 -> B:l1 [label = "1"]; B:l2 -> C:l2 [label = "1"]; B:l1 -> C:l1 [label = "1"]; C:l5 -> n5 [label = "0"]; C:l4 -> n4 [label = "0"]; C:l3 -> n3 [label = "0"]; C:l2 -> n2 [label = "0"]; C:l1 -> n1 [label = "0"]; bw_null -> A:backward -> B:backward -> C:backward [dir = back]; label = "\n 图 5-4 计算节点的排位"; } 再举个例子, 图 5-5 用虚线标记了在跳跃表中查找分值为 ``2.0`` 、 成员对象为 ``o2`` 的节点时, 沿途经历的层: 在查找节点的过程中, 程序经过了两个跨度为 ``1`` 的节点, 因此可以计算出, 目标节点在跳跃表中的排位为 2 。 .. graphviz:: digraph { rankdir = LR; node [shape = record, width = "0.5"]; // l [label = "
header | tail | level \n 5 | length \n 3 "]; subgraph cluster_nodes { style = invisible; header [label = " L32 | ... | L5 | L4 | L3 | L2 | L1 "]; bw_null [label = "NULL", shape = plaintext]; level_null [label = "NULL", shape = plaintext]; A [label = " L4 | L3 | L2 | L1 | BW | 1.0 | o1 "]; B [label = " L2 | L1 | BW | 2.0 | o2 "]; C [label = " L5 | L4 | L3 | L2 | L1 | BW | 3.0 | o3 "]; } subgraph cluster_nulls { style = invisible; n1 [label = "NULL", shape = plaintext]; n2 [label = "NULL", shape = plaintext]; n3 [label = "NULL", shape = plaintext]; n4 [label = "NULL", shape = plaintext]; n5 [label = "NULL", shape = plaintext]; } // l:header -> header [style = dashed]; l:tail -> C; header:l32 -> level_null [label = "0"]; header:l5 -> C:l5 [label = "3"]; header:l4 -> A:l4 [label = "1", style = dashed]; header:l3 -> A:l3 [label = "1"]; header:l2 -> A:l2 [label = "1"]; header:l1 -> A:l1 [label = "1"]; A:l4 -> C:l4 [label = "2"]; A:l3 -> C:l3 [label = "2"]; A:l2 -> B:l2 [label = "1", style = dashed]; A:l1 -> B:l1 [label = "1"]; B:l2 -> C:l2 [label = "1"]; B:l1 -> C:l1 [label = "1"]; C:l5 -> n5 [label = "0"]; C:l4 -> n4 [label = "0"]; C:l3 -> n3 [label = "0"]; C:l2 -> n2 [label = "0"]; C:l1 -> n1 [label = "0"]; bw_null -> A:backward -> B:backward -> C:backward [dir = back]; label = "\n 图 5-5 另一个计算节点排位的例子"; } 后退指针 """"""""""" 节点的后退指针(\ ``backward`` 属性)用于从表尾向表头方向访问节点: 跟可以一次跳过多个节点的前进指针不同, 因为每个节点只有一个后退指针, 所以每次只能后退至前一个节点。 图 5-6 用虚线展示了如果从表尾向表头遍历跳跃表中的所有节点: 程序首先通过跳跃表的 ``tail`` 指针访问表尾节点, 然后通过后退指针访问倒数第二个节点, 之后再沿着后退指针访问倒数第三个节点, 再之后遇到指向 ``NULL`` 的后退指针, 于是访问结束。 .. graphviz:: digraph { rankdir = LR; node [shape = record, width = "0.5"]; // l [label = "
header | tail | level \n 5 | length \n 3 "]; subgraph cluster_nodes { style = invisible; header [label = " L32 | ... | L5 | L4 | L3 | L2 | L1 "]; bw_null [label = "NULL", shape = plaintext]; level_null [label = "NULL", shape = plaintext]; A [label = " L4 | L3 | L2 | L1 | BW | 1.0 | o1 "]; B [label = " L2 | L1 | BW | 2.0 | o2 "]; C [label = " L5 | L4 | L3 | L2 | L1 | BW | 3.0 | o3 "]; } subgraph cluster_nulls { style = invisible; n1 [label = "NULL", shape = plaintext]; n2 [label = "NULL", shape = plaintext]; n3 [label = "NULL", shape = plaintext]; n4 [label = "NULL", shape = plaintext]; n5 [label = "NULL", shape = plaintext]; } // l:header -> header; l:tail -> C [style = dashed]; header:l32 -> level_null [label = "0"]; header:l5 -> C:l5 [label = "3"]; header:l4 -> A:l4 [label = "1"]; header:l3 -> A:l3 [label = "1"]; header:l2 -> A:l2 [label = "1"]; header:l1 -> A:l1 [label = "1"]; A:l4 -> C:l4 [label = "2"]; A:l3 -> C:l3 [label = "2"]; A:l2 -> B:l2 [label = "1"]; A:l1 -> B:l1 [label = "1"]; B:l2 -> C:l2 [label = "1"]; B:l1 -> C:l1 [label = "1"]; C:l5 -> n5 [label = "0"]; C:l4 -> n4 [label = "0"]; C:l3 -> n3 [label = "0"]; C:l2 -> n2 [label = "0"]; C:l1 -> n1 [label = "0"]; bw_null -> A:backward -> B:backward -> C:backward [dir = back, style = dashed]; label = "\n 图 5-6 从表尾向表头方向遍历跳跃表"; } 分值和成员 """""""""""""" 节点的分值(\ ``score`` 属性)是一个 ``double`` 类型的浮点数, 跳跃表中的所有节点都按分值从小到大来排序。 节点的成员对象(\ ``obj`` 属性)是一个指针, 它指向一个字符串对象, 而字符串对象则保存着一个 SDS 值。 在同一个跳跃表中, 各个节点保存的成员对象必须是唯一的, 但是多个节点保存的分值却可以是相同的: 分值相同的节点将按照成员对象在字典序中的大小来进行排序, 成员对象较小的节点会排在前面(靠近表头的方向), 而成员对象较大的节点则会排在后面(靠近表尾的方向)。 举个例子, 在图 5-7 所示的跳跃表中, 三个跳跃表节点都保存了相同的分值 ``10086.0`` , 但保存成员对象 ``o1`` 的节点却排在保存成员对象 ``o2`` 和 ``o3`` 的节点之前, 而保存成员对象 ``o2`` 的节点又排在保存成员对象 ``o3`` 的节点之前, 由此可见, ``o1`` 、 ``o2`` 、 ``o3`` 三个成员对象在字典中的排序为 ``o1 <= o2 <= o3`` 。 .. graphviz:: digraph { rankdir = LR; node [shape = record, width = "0.5"]; // l [label = "
header | tail | level \n 5 | length \n 3 "]; subgraph cluster_nodes { style = invisible; header [label = " L32 | ... | L5 | L4 | L3 | L2 | L1 "]; bw_null [label = "NULL", shape = plaintext]; level_null [label = "NULL", shape = plaintext]; A [label = " L4 | L3 | L2 | L1 | BW | 10086.0 | o1 "]; B [label = " L2 | L1 | BW | 10086.0 | o2 "]; C [label = " L5 | L4 | L3 | L2 | L1 | BW | 10086.0 | o3 "]; } subgraph cluster_nulls { style = invisible; n1 [label = "NULL", shape = plaintext]; n2 [label = "NULL", shape = plaintext]; n3 [label = "NULL", shape = plaintext]; n4 [label = "NULL", shape = plaintext]; n5 [label = "NULL", shape = plaintext]; } // l:header -> header; l:tail -> C; header:l32 -> level_null [label = "0"]; header:l5 -> C:l5 [label = "3"]; header:l4 -> A:l4 [label = "1"]; header:l3 -> A:l3 [label = "1"]; header:l2 -> A:l2 [label = "1"]; header:l1 -> A:l1 [label = "1"]; A:l4 -> C:l4 [label = "2"]; A:l3 -> C:l3 [label = "2"]; A:l2 -> B:l2 [label = "1"]; A:l1 -> B:l1 [label = "1"]; B:l2 -> C:l2 [label = "1"]; B:l1 -> C:l1 [label = "1"]; C:l5 -> n5 [label = "0"]; C:l4 -> n4 [label = "0"]; C:l3 -> n3 [label = "0"]; C:l2 -> n2 [label = "0"]; C:l1 -> n1 [label = "0"]; bw_null -> A:backward -> B:backward -> C:backward [dir = back]; label = "\n 图 5-7 三个带有相同分值的跳跃表节点"; } 跳跃表 ^^^^^^^^^^^ 虽然仅靠多个跳跃表节点就可以组成一个跳跃表, 如图 5-8 所示。 .. graphviz:: digraph { rankdir = LR; node [shape = record, width = "0.5"]; // //l [label = "
header | tail | level \n 5 | length \n 3 "]; subgraph cluster_nodes { style = invisible; header [label = " L32 | ... | L5 | L4 | L3 | L2 | L1 "]; bw_null [label = "NULL", shape = plaintext]; level_null [label = "NULL", shape = plaintext]; A [label = " L4 | L3 | L2 | L1 | BW | 1.0 | o1 "]; B [label = " L2 | L1 | BW | 2.0 | o2 "]; C [label = " L5 | L4 | L3 | L2 | L1 | BW | 3.0 | o3 "]; } subgraph cluster_nulls { style = invisible; n1 [label = "NULL", shape = plaintext]; n2 [label = "NULL", shape = plaintext]; n3 [label = "NULL", shape = plaintext]; n4 [label = "NULL", shape = plaintext]; n5 [label = "NULL", shape = plaintext]; } // //l:header -> header; //l:tail -> C; header:l32 -> level_null [label = "0"]; header:l5 -> C:l5 [label = "3"]; header:l4 -> A:l4 [label = "1"]; header:l3 -> A:l3 [label = "1"]; header:l2 -> A:l2 [label = "1"]; header:l1 -> A:l1 [label = "1"]; A:l4 -> C:l4 [label = "2"]; A:l3 -> C:l3 [label = "2"]; A:l2 -> B:l2 [label = "1"]; A:l1 -> B:l1 [label = "1"]; B:l2 -> C:l2 [label = "1"]; B:l1 -> C:l1 [label = "1"]; C:l5 -> n5 [label = "0"]; C:l4 -> n4 [label = "0"]; C:l3 -> n3 [label = "0"]; C:l2 -> n2 [label = "0"]; C:l1 -> n1 [label = "0"]; bw_null -> A:backward -> B:backward -> C:backward [dir = back]; label = "\n 图 5-8 由多个跳跃表节点组成的跳跃表"; } 但通过使用一个 ``zskiplist`` 结构来持有这些节点, 程序可以更方便地对整个跳跃表进行处理, 比如快速访问跳跃表的表头节点和表尾节点, 又或者快速地获取跳跃表节点的数量(也即是跳跃表的长度)等信息, 如图 5-9 所示。 .. graphviz:: digraph { rankdir = LR; node [shape = record, width = "0.5"]; // l [label = "
header | tail | level \n 5 | length \n 3 "]; subgraph cluster_nodes { style = invisible; header [label = " L32 | ... | L5 | L4 | L3 | L2 | L1 "]; bw_null [label = "NULL", shape = plaintext]; level_null [label = "NULL", shape = plaintext]; A [label = " L4 | L3 | L2 | L1 | BW | 1.0 | o1 "]; B [label = " L2 | L1 | BW | 2.0 | o2 "]; C [label = " L5 | L4 | L3 | L2 | L1 | BW | 3.0 | o3 "]; } subgraph cluster_nulls { style = invisible; n1 [label = "NULL", shape = plaintext]; n2 [label = "NULL", shape = plaintext]; n3 [label = "NULL", shape = plaintext]; n4 [label = "NULL", shape = plaintext]; n5 [label = "NULL", shape = plaintext]; } // l:header -> header; l:tail -> C; header:l32 -> level_null [label = "0"]; header:l5 -> C:l5 [label = "3"]; header:l4 -> A:l4 [label = "1"]; header:l3 -> A:l3 [label = "1"]; header:l2 -> A:l2 [label = "1"]; header:l1 -> A:l1 [label = "1"]; A:l4 -> C:l4 [label = "2"]; A:l3 -> C:l3 [label = "2"]; A:l2 -> B:l2 [label = "1"]; A:l1 -> B:l1 [label = "1"]; B:l2 -> C:l2 [label = "1"]; B:l1 -> C:l1 [label = "1"]; C:l5 -> n5 [label = "0"]; C:l4 -> n4 [label = "0"]; C:l3 -> n3 [label = "0"]; C:l2 -> n2 [label = "0"]; C:l1 -> n1 [label = "0"]; bw_null -> A:backward -> B:backward -> C:backward [dir = back]; label = "\n 图 5-9 带有 zskiplist 结构的跳跃表"; } ``zskiplist`` 结构的定义如下: :: typedef struct zskiplist { // 表头节点和表尾节点 struct zskiplistNode *header, *tail; // 表中节点的数量 unsigned long length; // 表中层数最大的节点的层数 int level; } zskiplist; ``header`` 和 ``tail`` 指针分别指向跳跃表的表头和表尾节点, 通过这两个指针, 程序定位表头节点和表尾节点的复杂度为 :math:`O(1)` 。 通过使用 ``length`` 属性来记录节点的数量, 程序可以在 :math:`O(1)` 复杂度内返回跳跃表的长度。 ``level`` 属性则用于在 :math:`O(1)` 复杂度内获取跳跃表中层高最大的那个节点的层数量, 注意表头节点的层高并不计算在内。